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ABSTRACT: The conversion of pentose to ethanol is one of the major
barriers of industrializing the lignocellulosic ethanol processes. As one of the
most promising native strains for pentose fermentation, Scheffersomyces
stipitis (formerly known as Pichia stipitis) has been widely studied for its
xylose fermentation. In spite of the abundant experimental evidence
regarding ethanol and byproducts production under various aeration
conditions, the mathematical descriptions of the processes are rare. In this
work, a constraint-based metabolic network model for the central carbon
metabolism of S. stipitis was reconstructed by integrating genomic (S. stipitis v2.0, KEGG), biochemical (ChEBI, PubChem), and
physiological information available for this microorganism and other related yeast. The model consists of the stoichiometry of
metabolic reactions, biosynthetic requirements for growth, and other constraints. Flux balance analysis is applied to characterize
the phenotypic behavior of S. stipitis grown on xylose. The model predictions are in good agreement with published experimental
results. To understand the effect of redox balance on xylose fermentation, we propose a system identification-based metabolic
analysis framework to extract biological knowledge embedded in a series of designed in silico experiments. In the proposed
framework, we first design in silico experiments to perturb the metabolic network in order to investigate the interested properties
and then perform system identification, whereby applying principal component analysis (PCA) to the data generated by the
designed in silico experiments. By combining the in silico perturbation experiments with system identification tools, biologically
meaningful information contained in the complex network structure can be decomposed and translated into easily interpretable
information that is useful for biologist. The PCA analysis identifies the phenotypic changes caused by oxygen supply and reveals
key metabolic reactions related to redox homeostasis in different phenotypes. In addition, the influence of the cofactor preference
of key enzyme (xylose reductase) in xylose metabolism is investigated using the proposed approach, and the results provide
important insights on cofactor engineering of xylose metabolism.

KEYWORDS: Schef fersomyces stipitis, Xylose metabolism, Redox balance, Principal component analysis, Cofactor engineering,
Systems biology

■ INTRODUCTION

Lignocellulosic ethanol, considered as a second-generation
biofuel,1 has received increasing attention in recent years due to
the increasing demand of fuel and issues caused by first-
generation biofuels (i.e., fuels from food crops).2 Efficient
utilization of xylose is one of the major obstacles for
commercial production of lignocellulosic ethanol.3 Schefferso-
myces stipitis (formerly known as Pichia stipitis)4 has a set of
physiological traits that make it potentially a valuable candidate
for lignocellulosic ethanol production.5 It is considered as one
of the few yeasts that can metabolize xylose in high efficiency
with few byproducts.6 It has been shown that oxygen
availability plays a critical role in xylose metabolism of S.
stipitis due to redox balance.5 In particular, the NAD(P)H-
dependent XR and NAD+-dependent XDH of S. stipitis create a
cofactor imbalance resulting in xylitol formation under oxygen
limited conditions.7−10 Therefore, a better understanding of the
cellular redox balance would provide valuable insight on how to
improve ethanol production of S. stipitis. However, in spite of

the abundant experimental evidence, little is known about the
cellular details on how redox balance affects xylose metabolism.
Constraint-based stoichiometric metabolic network modeling

has been proven to be an effective way to study the metabolism
of many microorganisms. Among the many approaches, flux
balance analysis (FBA) has been adopted in many studies and
can be used to study many aspects of biochemical networks.11

However, one of the difficulties in the existing metabolic
network modeling approach is how to identify key reactions
among hundreds or thousands of reactions when cellular
metabolism is influenced by a given factor. To address this
challenge, we propose a new approach to analyze xylose
metabolism by integrating FBA and principal component
analysis (PCA), and we apply this framework to study the
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central carbon metabolic network of S. stipitis. The proposed
approach can reveal the key metabolism details of how different
oxygen utilization rates would cause metabolism shifts. The
influences of cofactor specificity of a critical enzyme in the
xylose metabolism, xylose reductase (XR), was also studied.
The analysis results provide valuable insights on possible
cofactor engineering of S. stipitis.

■ METHODS
Construction of Metabolic Model. The central carbon metabolic

network model of S. stipitis is constructed following the published
protocol.12 The network model is reconstructed based on the genomic
and biochemical information of the organism available in its genome
project,5 KEGG database,13 and available biochemical information. An
overview of the reconstructed metabolic network model is shown in
Figure 1, with detailed reactions provided in the Supporting

Information. The metabolites involved in the model have all been
verified and balanced with both element and charge based on
biochemical information from ChEBI14 and the PubChem compound
database.15 The model captures cell growth on glucose and xylose.
Included in the model are 117 reactions with 66 as reversible reactions
and 51 as irreversible reactions (including transport reactions). Fifteen
compounds allowed to exchange with the external environment are
glucose, xylose, NH4

+, urea, O2, CO2, SO4
2−, H+, HO4P

2− (Pi2‑), H2O,
ethanol, acetate, glycerol, xylitol, and biomass. The nongrowth
associated maintenance requirement is tested within the range of
[0.5, 3.5] mmol/gDCW/h according to different literatures,16−19 and

the value of 3.5 mmol ATP/gDCW/h is adopted (DCW stands for dry
cell weight). The model consists of the reactions from intermediary
metabolism including glycolysis, pentose phosphate pathway,
tricarboxylic acid (TCA) cycle, glyoxylate and dicarboxylate
metabolism, oxidative phosphorylation, nitrogen metabolism, and
nicotinate and nicotinamide metabolism. The model also includes
reactions of cell mass formation and synthesis of various precursors
and common byproducts such as ethanol, glycerol, xylitol, and acetate.
Some linear reactions in the model are lumped together for simplicity.
Transport reactions, including passive diffusion, facilitated diffusion,
and active transport, are also incorporated. Cell mass reaction in the
model is assembled from the macromolecular components of the cells
(i.e., proteins, nucleic acids, lipids, and carbohydrates).12,20 The
contribution of each component to cell mass and the appropriate
coefficients for every building block are estimated from the genome
data of S. stipitis and information of S. cerevisiae.5,21,22 The cell mass
term presented here reconnect the cell composition to 13 precursors
along with energy (ATP), redox cofactors (NAD+/NADH and
NADP+/NADPH), and other nutrients (Pi2‑, NH4

+ and SO4
2−). The

13 precursors are glutamate, acetyl-CoA, glycerol, oxaloacetate,
phosphoenolpyruvate, glucose-6-phosphate, glyceraldehyde-3-phos-
phate, glutamine, ribose-5-phosphate, pyruvate, erythose-4-phosphate,
and 3-phospho-D-glycerate.

Flux Balance Analysis (FBA). Flux balance analysis (FBA) is a
commonly applied method to study metabolic networks, especially
genome-scale metabolic networks.23 In this work, FBA is applied to
study the central carbon metabolism of S. stipitis using a publicly
available constraints-based reconstruction and analysis (COBRA)
toolbox for Matlab version 2.05.23 The upper limits of uptake rate of
xylose and oxygen under various conditions are defined in FBA to
predict external secretion rates and internal net fluxes. Other exchange
fluxes are constrained accordingly. Maximizing cellular growth rate is
used as the objective function for all FBA simulations. The initial
concentrations of different compounds that are allowed to exchange
with the environment are not needed for FBA calculation. The carbon
source (glucose or xylose) and oxygen uptake rates are fixed, while the
other exchange compounds (NH4

+, SO4
2−, H+, HO4P

2−(Pi2−), H2O)
are allowed to enter and exit the network freely. The products (CO2,
ethanol, acetate, glycerol, xylitol) are expelled from the network
liberally, with the biomass being computed. The simulation results are
analyzed further to reveal the intracellular mechanism of xylose
metabolism.

Principal Component Analysis (PCA). Principal component
analysis (PCA) is a commonly used multivariate analysis method for
dimension reduction, which extracts the directions corresponding to
the largest variations among different variables in a high dimensional
data set.24 It has been applied in the metabolomics studies to analyze
metabolites profiles at given conditions.25 In this work, we propose a
new way of applying PCA to extract the underlying biological
knowledge embedded in the data obtained through designed in silico
experiments.

Proposed Method: FBA−-PCA. In microbial metabolism,
hundreds and even thousands of reactions are involved. Existing
approaches, such as elementary mode analysis (EMA) and flux balance
analysis (FBA), can provide detailed flux distributions under different
conditions and therefore provide descriptions of different phenotypes.
However, by simply comparing different flux distributions, it is very
difficult to extract the underlying biological knowledge, such as what
key reactions or key correlations of different pathways govern the
cellular metabolism of a given phenotype. In this work, we propose a
system identification based metabolic flux analysis framework to
extract such knowledge by integrating PCA with FBA. Specifically, in
the proposed framework, we first design in silico experiments to
perturb the metabolic network in order to investigate the interested
properties, and then we perform system identification by applying
PCA to the high dimensional data generated through the designed in
silico experiments. By combining the in silico perturbation experi-
ments with system identification tools, biologically meaningful
information contained in the complex network structure can be
extracted from a sufficient amount of in silico experimental data in a

Figure 1. Overview of the metabolic network model. The double
arrows in the same direction for a reaction indicate that the enzyme
that catalyzes the reaction has affinity to different cofactors (NADH/
NAD+ and NADPH/NADP+). This also applies to the other figures in
this work.
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form that is easily interpretable by biologists. It is worth noting that
because the metabolic network is linear, if only one degree of
perturbation is introduced within a series of in silico experiments, then
one principal component (PC) is sufficient to capture 100% of the
variation, provided that there is no saturation (i.e., flux reaching its
upper/lower limit) nor network structure changes (i.e., activation/
deactivation of reactions). In this case, the correlations among different
reactions are fully captured by the loading of the PC. Therefore, by
examining the loading, we can easily identify how the introduced
perturbation propagates through the whole network and what
reactions are affected most by the introduced perturbation. Here, we
use an illustrative example to explain how the proposed method works.
Illustrative Example. In this illustrative example, we consider a

simple reaction network as shown in Figure 2. The network consists of
five metabolites and nine reactions, which are listed in Table 1. The

resulted stoichiometric matrix is given in Table 2. Among all reactions,
three are exchange reactions and six are internal reactions. The
constraints we consider are: 0 ≤ re1, ...., re9 ≤ 10. Below, we consider
two case studies: one with maximizing production of metabolite D as
the objective function of FBA and the other with maximizing
production of metabolite E as the objective function. For both cases,
we investigate how the flux distribution would be affected if we
increase the pickup rate of substrate A. In particular, we would like to
identify what reactions are affected most significantly if pickup rate of
A increases.
Case Study I: FBA Objective Function = Maximizing Flux of re8

(Production of D). In this case study, we first conduct a series of 100
in silico experiments by varying the flux of re1 (pick up rate of A) from
2 to 4 mmol/gDCW/h with a step size of 0.02. This set of experiments
results in a 9 × 100 data matrix, where each column represents the
nine reaction fluxes for a given substrate pick up rate. We then perform

PCA on the data matrix, which confirms that one principal component
(PC) captures 100% of the variance contained in the data matrix. The
scaled loading of the PC is plotted in Figure 3. The loadings show that

with increased substrate pickup rate (which is scaled to be 1 as the
basis) only re4 and re8 are affected with a scale of 1 and 4, which
indicates that flux of re4 increases with the same amount as that of re1,
while flux of re8 increase 4 times the amount of increase in flux of re1.
It is worth noting that a negative loading in this case would indicate a
decreased flux. Figure 4 visualizes the analysis result by highlighting the
reactions that are affected by increasing flux of re1.

Case Study II: FBA Objective Function = Maximizing Flux of re9
(Production of E). In this case study, similar steps as in case study I
were carried out, with the only difference in the objective function of
FBA. In this case study, the objective function is to maximize the
production of E. The PC loading and network visualization are plotted
in Figures 5 and 6.

Both case studies show that even though the “hypothetical cell” has
an alternative route to produce D and E, i.e., the one with intermediate
metabolite C, it does not choose the alternative route because the
route does not maximize the objective function. This is due to the
difference in stoichiometric coefficients (A→ 0.5C→ 0.5D while A→
2D for the chosen route). If the alternative route were chosen, less
product would be produced.

This illustrative example shows that the proposed method can
systematically identify the reactions that would be affected by the
introduced perturbation (e.g., increased substrate pickup rate in this
case) without going through the detailed examination of the network
stoichiometry. Such examination is nontrivial even for relatively small
network models, such as central carbon metabolic networks, and
quickly becomes infeasible when the size of the network increases. But
with the proposed method, we can easily examine how a perturbation
would affect the whole network and identify the key reactions that are
affected the most by the perturbation.

Figure 2. Reaction network scheme of the illustrative example.

Table 1. Internal and Exchange Reactions of the Illustrative
Example

internal reactions exchange reactions

re2: A → B re5: C → D re1: Aex → A
re3: B → 0.5C re6: C → 2E re8: D → Dex

re4: A → 2D re7: 0.5 D → E re9: E → Eex

Table 2. Stoichiometric Matrix

re1 re2 re3 re4 re5 re6 re7 re8 re9

A 1 −1 0 0 0 0 0 0 0
B 0 1 −1 −1 0 0 0 0 0
C 0 0 0.5 0 −1 −1 0 0 0
D 0 0 0 2 1 0 −0.5 −1 0
E 0 0 0 0 0 2 1 0 −1

Figure 3. Scaled PCA loading for case study I.
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■ VALIDATION AND ANALYSIS OF S. stipitis
METABOLIC NETWORK

In this section, we apply the framework outlined and illustrated
in the previous section to validate and analyze the
reconstructed S. stipitis metabolic network model.
Validation of the Model. After the metabolic network

model is reconstructed, we first validate the model by
comparing the computed flux distribution with published
experimental data. Specifically, five sets of published exper-
imental results26 are used to validate the proposed metabolic
network model. Figures 7 −10 compare the model predicted
flux distribution with batch experiments under four different
growth regimes: glucose and xylose aerobic, and glucose and
xylose microaerobic.26 In these simulations, the carbon and
oxygen uptake rates were constrained to be the same as the
experimental values. Figures 7−10 show that the model
predictions in general agree with the experimental results

very well, with the only exceptions of biomass under glucose
microaerobic and CO2 under xylose microaerobic condition,
which show bigger discrepancies. In addition, a set of reported
chemostat experimental results27 are used to validate the model,
which is shown in Figure 11. In Grootjen et al.,27 a series of
chemostat growth experiments on glucose were conducted, and
yields of biomass and ethanol with varying oxygen uptake rates
were reported. Figure 11 compares the experimental and model
predicted biomass and ethanol under oxygen-limited con-
ditions. In these simulations, the glucose and oxygen uptake
rates were constrained to be the same as the experimental

Figure 4. Visualization of the analysis results for case study I. The reactions that are affected by increasing flux of re1 are highlighted in blue. The line
thickness is proportional to its loading.

Figure 5. Scaled PCA loading for case study II.

Figure 6. Visualization of the analysis results for case study II. The reactions that are affected by increasing flux of re1 are highlighted in blue. The
line thickness is proportional to its loading.

Figure 7. Comparison of model predicted flux distribution with batch
experiments under xylose microaerobic condition.
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values. As shown in Figure 11, the model predictions agree well
with the reported experimental data.
Analysis of the Model. With the model validated, the

topological properties and intracellular flux distribution of the
central carbon metabolic model were studied using FBA. In all
simulations carried out in this work, the model is constrained
for cells to grow on minimal defined medium.28 The
topological study shows that very few metabolites are highly
connected while most metabolites participate only in a few
reactions, which indicates that the metabolic network is scale-
free. The average reaction participation, i.e., the number of
metabolites per reaction, is approximately four, which indicates
that the most common reaction mode in the model is four
reactants and products combined. The topological analysis
results are in agreement with the results from other metabolic
network models, e.g., E. coli11 and S. cerevisiae.22 The reactions
that are essential to cell growth are evaluated as whether its
removal is fatal to the model. The results indicate that the

identified key reactions depend on the carbon source (glucose
or xylose) and oxygen condition (aerobic or oxygen-limited).
With aerobic glucose culture, it is shown that a total of 14
reactions are essential to cell growth. When switched to
oxygen-limited condition (glucose), the number changed to 18.
For xylose culture, the number is 16 and 26 for aerobic and
oxygen-limited conditions, respectively, among which 10
reactions are essential under all conditions. They are reactions
in glycolysis, pentose phosphate pathway, and urea metabolism.
The larger difference of essential reaction number in xylose
metabolism under different aeration conditions indicates the
higher sensitivity of xylose metabolism to oxygen condition
change compared with glucose metabolism, which agrees with
experimental findings.29

■ ANALYSIS OF XYLOSE METABOLISM IN S. stipitis
It is well-known that oxygen plays an important role in cell
growth, redox balance, functioning of the mitochondria and
generation of energy for xylose transport in S. stipitis.29

However, how oxygen influences the intracellular flux
distribution and redox balance and which reactions would be
the most important for redox balance are not well understood.
In this section we design a series of in silico experiments to
perturb the central carbon metabolic network of S. stipitis and
apply PCA to analyze the in silico experimental results. The
goal is to identify the key reactions or pathways that are affected
by the introduced perturbation.

Phenotype Identification. Designed in Silico Experi-
ments. In this case study, in order to study how different
oxygen availabilities affect cellular metabolism, we performed
FBA to determine the intracellular fluxes by varying the oxygen
pickup rate (i.e., oxygen utilization rate) from 0 to 20 mmol/
gDCW/h with a step size of 0.01. The xylose uptake rate has an
upper limit of 10 mmol/gDCW/h. The specified xylose and
oxygen uptake rates were chosen based on reported
experimental results.26 This set of experiments resulted in a
117 × 2001 matrix, where each column represents the 117
intracellular fluxes under a certain OUR. In the model, the flux
distribution ratio through NADPH-dependent and NADH-
dependent xylose reductase (XR) was set to be 1.0 (the setting

Figure 8. Comparison of model predicted flux distribution with batch
experiments under glucose microaerobic condition.

Figure 9. Comparison of model predicted flux distribution with batch
experiments under xylose aerobic condition.

Figure 10. Comparison of model predicted flux distribution with batch
experiments under glucose aerobic condition.

Figure 11. Model predicted flux distribution of S. stipitis during
glucose metabolism compared with experimental chemostat data. Only
substrate uptake rates are constrained, i.e., Glucose(exp) = Glucose-
(model).
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and influence of such ratio is discussed later). Phenotype phase
plane (PhPP) analysis30,31 was also carried out under the same
conditions for comparison.
Phenotypes Identified. PCA was applied to analyze the in

silico experimental results. As shown in Figure 12(a) where

scores corresponding to the first two PCs are plotted, a total of
six phenotypes of metabolism are identified. One phenotype is
distinguished from another phenotype when the correlation
among fluxes has changed, which is shown on the PCA score
plot as two different straight lines, each represents a distinctive
correlation among fluxes. The distinction between phenotype 2
and phenotype 3 is not very clear in the figure because of the
scale. The distinction is clear if the figure is zoomed in. The
result from PhPP is given in Figure 12(b), where the same six
phenotypes are identified. Figure 12(c) plots the model
predicted cell growth rate and ethanol production rate under
different aeration conditions, which reveals some difference
among different phenotypes. The main characteristics of the
different phenotypes are summarized in Table 3.
Although PhPP and the proposed approach identify the same

six phenotypes, they are completely different in revealing the
cellular details that underlie the specific phenotype. For PhPP,
it can easily identify whether oxygen or carbon source is a

limiting factor by examining the shadow price,30 which
determines the effect of each metabolite (bi

v) on the objective
function (Zi) and can be expressed mathematically as γi =
−((dZi)/(dbi

v)), but it is very difficult to identify what
contribute to the change in the shadow price, as it only
examines the objective function as a whole and does not
provide the detail on how different reactions are affected by
changing each metabolite. On the other hand, for the proposed
approach, the limiting factor can be identified by checking
whether the corresponding fluxes hit their upper limits. More
importantly, one significant advantage of the proposed FBA−
PCA based approach is that it can reveal the cellular details,
particularly the key reactions that differentiate different
phenotypes, by examining the PCA loading matrix.
Here, we use an example to demonstrate the effectiveness of

the proposed FBA−PCA method. The reactions that are
affected the most by changing OUR in both phenotype 2 and 3
are plotted in Figure 13, where the metabolic fluxes are colored
according to their loadings.
From Figure 13, several key differences can be observed.

First, the importance of TCA cycle for cell growth in
phenotype 3 has decreased compared to phenotype 2. Further
examination shows that this is caused by the turning off of 2-
oxoglutarate dehydrogenase due to decreased oxygen supply in
phenotype 3, which further leads to an incomplete (or
branched) TCA cycle as shown in Figure 14 (also shown as
a gray TCA cycle in Figure 13(b) but as a green TCA cycle in
Figure 13(a)). This branched TCA cycle has been previously
reported in S. cerevisiae.32,33 This prediction is further supported
by Jeffries et al., where expressed sequence tags (EST) from
oxygen-limited growth of S. stipitis on xylose showed that
KGD2 (the TCA cycle reaction being bypassed) was
downregulated. Second, fermentation pathway, i.e., ethanol
production, has been activated by the branched TCA cycle to
resolve the redox balance of NADH/NAD+, which is indicated
by gray in phenotype 2 and red in phenotype 3. Third, due to
the decreased cell growth, the requirement of NADPH has
been reduced and caused the down-regulation of fluxes through
pentose phosphate pathway (PPP) as shown in Figure 13 by
the color of PPP changing from light green in phenotype 2 to
light yellow in phenotype 3.

Effect of OUR on Redox Balance in Phenotype 5. In
this subsection, we apply the proposed FBA−PCA method to
study the effect of OUR on redox balance in phenotype 5.
Specially, we study the OUR range of [0.2, 0.5] mmol/gDCW/
h, as Figure 12 shows that ethanol production is the most
sensitive to OUR in this range. We first conducted a series of in

Figure 12. Phenotypes identified with PCA when OUR changes
within [0, 20] mmol/gDCW/h. (a) phenotypes identified by PCA. (b)
Phenotypes identified by PhPP. (c) Model predicted cell growth rates
and specific ethanol production rates. The numbers 1−6 correspond
to the identified phenotypes.

Table 3. Summary of Characteristics of Identified
Phenotypes

phenotype
growth
limitation

metabolic
product(s) main metabolic characteristics

1 xylose cell mass aerobic growth
2 xylose,

oxygen
cell mass, acetic
acid

increasing acetic acid production

3 xylose,
oxygen

cell mass,
ethanol, acetic
acid

ethanol production and declined
acetic acid production

4 xylose,
oxygen

cell mass,
ethanol, xylitol

declined ethanol production and
increasing xylitol production

5 oxygen cell mass declined ethanol and xylitol
production

6 − − cannot maintain metabolism (no
growth)
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silico experiment where FBA was performed to compute the
flux distribution by varying OUR from 0.2 to 0.5 mmol/
gDCW/h, with step size 0.01. Then PCA was applied to
analyze the resulted data matrix. Again, one PC captures 99.9%
of all variance. All reactions that involve cofactor consumption
and regeneration are listed in Table 4. The loadings
corresponding to the involved reactions are plotted in Figure
15. The loadings are scaled by the rate of change in OUR. The
fluxes of key reactions that are affected the most by the increase
of OUR are tabulated in Table 5 for two conditions with OUR
of 0.2 and 0.5 mmol/gDCW/h. The seven key reactions
identified in Table 5 cover 99% of the total redox shift. The
metabolic map with identified key reactions for phenotype 5 is
shown in Figure 16. Both Figure 15 and Table 5 show that the
proposed approach can reveal key information about
metabolism shift and therefore help interpret the predictions

from metabolic network model and provide insights into
microorganism metabolism.

Effect of Xylose Reductase (XR) Cofactor Specificity
on Redox Balance. It has been reported that S. stipitis can
ferment xylose to ethanol with little xylitol production.5 This is
due to the dual affinity of XR to both NADH and NADPH, as
illustrated in Figure 17. In the first step where xylose is reduced
to xylitol, XR prefers NADPH over NADH.34−38 Together with
the difference in cellular cofactor concentrations,39 more
NADPH than NADH is consumed in the first step. In the
second step where xylitol is converted to xylulose, XDH is
reported to use NAD+ only. Therefore, there exists a cofactor
imbalance when xylose is converted to xylulose. To reduce such
cofactor imbalance, researchers have tried to apply protein
engineering to alter the cofactor preferences of XR toward
NADH in order to improve ethanol production and/or to
reduce byproducts production.40−45 In the previous subsection,
it has been shown that a perturbation will propagate through
the whole metabolic network and significantly affect multiple
reactions involving cofactor consumption and regenerations.
Therefore, systematically studying the effect of XR cofactor
specificity on overall cellular cofactor balance would help
understand the biological details of xylose fermentation in S.
stipitis and engineered S. cerevisiae as well as provide rational
design strategy for cofactor engineering.
We performed a series of in silico experiments with gradually

increased XR flux ratio to study the effect of XR cofactor
specificity on cellular redox balance. Here, XR flux ratio is
defined as the ratio of the flux through the reaction that utilizes
NADPH to the flux through the reaction that utilizes NADH
when converting xylose to xylitol. On the basis of the reported

Figure 13. Metabolic maps for phenotype 2 (a) and phenotype 3 (b) identified in Figure 12.

Figure 14. TCA cycle change occurred in phenotype 3: (a) complete
TCA cycle, (b) branched TCA.
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results and general knowledge of the XR affinity to different
cofactors and the in vivo concentrations of NADH/NAD+ and
NADPH/NADP+ pools,46 as well as the reported results on
cofactor affinity of XR mutants, in these experiments the XR

flux ratio was varied within [0, 2] to study its effect on redox
balance and ethanol production.
First, we performed simulations to study the general

influence of XR activity ratio to model predictions under
various oxygenation conditions through FBA. In these
experiments, the xylose uptake rate was again constrained to
be 10 mmol/gDCW/h, and OUR was varied between 0 and 14

Table 4. All Reactions That Involve Cofactor Consumption and Regeneration

R1 xyl[c] + nadh[c] + h[c] → xylt[c] + nad[c]
R2 dhap[c] + nadh[c] + h[c] → glyc3p[c] + nad[c]
R3 acald[c] + nadh[c] + h[c] ↔ etoh[c] + nad[c]
R4 akg[c] + gln[c] + h[c] + nadh[c] → 2 glu[c] + nad[c]
R5 akg[c] + nh4[c] + nadh[c] + h[c] → glu[c] + nad[c] + h2o[c]
R6 nadh[c] + q[c] + 5 h[c] → qh2[c] + nad[c] + 4 h[e]
R7 xylt[c] + nad[c] ↔ xylu[c] + nadh[c] + h[c]
R8 atp[c] + nad[c] → adp[c] + nadp[c] + h[c]
R9 mal[c] + nad[c] → pyr[c] + nadh[c] + co2[c]
R10 acald[c] + h2o[c] + nad[c] → ac[c] + nadh[c] + 2 h[c]
R11 gap[c] + nad[c] + pi[c] ↔ 13bpg[c] + nadh[c] + h[c]
R12 mal[c] + nad[c] ↔ oaa[c] + nadh[c] + h[c]
R13 akg[c] + coa[c] + nad[c] → succoa[c] + co2[c] + nadh[c]
R14 icit[c] + nad[c] → akg[c] + co2[c] + nadh[c]
R15 xyl[c] + nadph[c] + h[c] → xylt[c] + nadp[c]
R16 acald[c] + nadph[c] + h[c] ↔ etoh[c] + nadp[c]
R17 akg[c] + nh4[c] + nadph[c] + h[c] → glu[c] + nadp[c] + h2o[c]
R18 acald[c] + h2o[c] + nadp[c] → ac[c] + nadph[c] + 2 h[c]
R19 g6p[c] + nadp[c] → 6pgl[c] + nadph[c] + h[c]
R20 6pgc[c] + nadp[c] → nadph[c] + co2[c] + ru5p[c]
R21 sucsal[c] + nadp[c] + h2o[c] → succ[c] + nadph[c] + 2 h[c]
R22 icit[c] + nadp[c] → akg[c] + co2[c] + nadph[c]

Figure 15. Loadings of the reactions involved in cofactor consumption
and regeneration.

Table 5. Shift of Cofactor Consumption and Regeneration in
Phenotype 5

cofactor reaction
OUR =
0.200

OUR =
0.500

total
shift

NADH consumption R1 2.00 4.85 6.63
R3 3.61 7.39

NADH regeneration R7 2.38 5.36 7.16
R11 3.63 7.81

NADPH consumption R15 2.00 4.85 2.85
NADPH regeneration R19 1.00 2.57 3.14

R20 1.00 2.57

Figure 16. Metabolic map for phenotype 5 with key reactions (with
dark green arrows) identified by FBA−PCA.
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mmol/gDCW/h with a step size of 0.1. The XR flux ratio
compared in these experiments varied between [0, 2] with a
step-size of 0.2, with an additional XR flux ratio of 10 as an
extreme case. The resulted cell growth, ethanol production, and
xylitol production are shown in Figure 18. It shows that the
increase of NADH affinity of XR can improve the ethanol
production and reduce xylitol production.47

In order to elucidate the cellular details that underlie the
predicted cell growth and ethanol production, we carried out a
second set of in silico experiments, where we fixed both xylose
and oxygen uptake rates to 10 mmol/gDCW/h and 0.4 mmol/

gDCW/h respectively. Within this set of in silico experiments,
the XR flux ratio was again changed between [0, 2] with a step
size of 0.01. PCA was applied to analyze the resulted flux
distribution matrix to identify the key changes among different
reactions when the XR flux ratio is changed. The loadings
corresponding to the reactions involving cofactor consumption
and regeneration are plotted in Figure 19. The loadings are

scaled by the rate of change in XR flux ratio. The fluxes of key
reactions that are affected most by increase of XR flux ratio are
tabulated in Table 6 for two conditions with XR flux ratio of 0.5

and 2.0. The seven key reactions identified in Table 6 cover
98% of the total redox shift. The metabolic map with identified
key reactions is shown in Figure 20.
By comparing Figures 16 and 20 as well as Tables 5 and 6, it

is interesting to notice that the same seven reactions that
involve cofactor consumption and regeneration are affected the
most by changing OUR or changing XR flux ratio. However,
how they are affected by different perturbations are different. It
could be because the in silico experiments were conducted
under the same phenotype, i.e., phenotype 5. We are currently
running further experiments to test whether different reactions
would be affected the most for different phenotypes.

■ CONCLUSIONS
In this work, the central carbon metabolic network of S. stipitis
is reconstructed. The model is validated against experimental
results reported in the literature. Even though the reconstructed
metabolic network model does not capture all the cellular
details, for example, it only considers one compartment (the

Figure 17. Illustration of xylose metabolism in S. stipitis.

Figure 18. Influences of XR flux ratio on specific cell growth rate (a),
specific ethanol production rate (b), and specific xylitol production
rate (c). The arrows in the plots indicate the increase of XR flux ratio.

Figure 19. Loadings of the reactions involved in cofactor consumption
and regeneration.

Table 6. Shift of Cofactor Consumption and Regeneration

cofactor reaction XR = 0.5 XR = 2.0 total shift

NADH consumption R1 6.67 2.64 −9.66
R3 10.1 4.47

NADH regeneration R7 6.92 3.32 −9.63
R11 10.6 4.57

NADPH consumption R15 3.33 5.28 1.95
NADPH regeneration R19 1.83 2.68 1.7

R20 1.83 2.68
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cytosol) and does not contain any gene regulatory mechanism,
it still provides a comprehensive picture of the central carbon
metabolism of S. stipitis. Such a model enables us to elucidate
the xylose metabolism using a systems approach.
To investigate how the cellular redox balance is affected by

change in the OUR and XR cofactor specificity, we developed a
system identification-based metabolic flux analysis framework
to extract the underlying biological knowledge embedded in the
network structure. By applying the proposed framework, we
were able to identify the key reactions that dominate the
cellular redox balance. It is interesting to find out that under an
oxygen-limited condition it is the same set of the key reactions
that dominate the redox shift caused by a change in OUR or a
change in the XR cofactor specificity, although they are affected
in different ways by different factors. The in silico experiments
and PCA analysis results show that xylose reductase plays a key
role in xylose fermentation to ethanol. In particular, its cofactor
specificity, if adjusted toward favoring NADH, could improve
ethanol yield. Finally, the set of key reactions (total of seven
reactions) should be considered together when designing a
mutant to improve ethanol yield through shifting cellular redox
balance.
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